
INTRODUCTION

The ClearCore Command Protocol (CCCP) is an example project for use on the Teknic ClearCore

I/O and motion controller, with optional integration to Teknic ClearPath-SD integrated servo

motors and additional I/O points. Commands are passed to the CCCP running on ClearCore,

where they are parsed and their commanded functionality realized.

Natively, the CCCP implements the following functionality:

• Controlling ClearPath-SD motors, including

o Enabling and disabling

o Commanding absolute or relative positional moves

o Commanding velocity moves

• Querying motor information: position, velocity, and status

• Modifying parameters for motors, including

o Setting acceleration and velocity limits on movement commands

o Clearing motor alerts

o Zeroing number space (useful for absolute positional moves)

• Reading and writing to digital and analog I/O ports

• Sending specific feedback and error messages, configurable as either simple numerical
feedback or verbose, human-readable messages

The CCCP by default accepts input and sends output via USB connection to a terminal, such as

the serial monitor in the Arduino IDE, the data visualizer in Microchip Studio, or another

terminal application on a PC. It can also be configured to accept commands from other streams -

such as ClearCore's COM ports, ethernet port, or XBee connection - and sources - such as typed

user input, input from a text file, or control from another device sending text commands to

ClearCore. Other ClearCore examples demonstrate communication via these alternate

connection options.

The CCCP is designed to be highly customizable, easily modified and adapted to fit a variety of

application needs. This guide highlights features and functionality of the CCCP without

modification, and offers advice on how to expand its functionality.

ADDITIONAL RESOURCES
ClearCore Software Documentation:

https://teknic-inc.github.io/ClearCore-library/

ClearCore Manual:

https://www.teknic.com/files/downloads/clearcore_user_manual.pdf

ClearCore System Diagram and Connection Diagrams:

https://www.teknic.com/files/downloads/clearcore_user_manual.pdf

ClearPath Manual (DC Power):

https://www.teknic.com/files/downloads/clearpath_user_manual.pdf

ClearPath Manual (AC Power):

https://www.teknic.com/files/downloads/ac_clearpath-mc-sd_manual.pdf

https://teknic-inc.github.io/ClearCore-library/
https://www.teknic.com/files/downloads/clearcore_user_manual.pdf
https://www.teknic.com/files/downloads/clearcore_user_manual.pdf
https://www.teknic.com/files/downloads/clearpath_user_manual.pdf
https://www.teknic.com/files/downloads/ac_clearpath-mc-sd_manual.pdf

COMMANDS

GENERAL NOTES ON COMMAND FORMATTING AND PARSING
• Commands are formatted according to the following:

o The first character of a command is a single letter. The CCCP is not case sensitive.

o There is no space between a command letter and a required motor/connector

number parameter.

o There is not a space between a required motor/connector number parameter and a

second letter parameter, e.g. query and limit commands.

o There is a space between a required motor/connector number parameter (or a

second letter parameter) and a second numerical parameter, e.g. velocity and limit

commands.

• Acceptable motor numbers include 0, 1, 2, and 3. Assuming all motors have been
correctly configured based on the header in the source code, all motor commands are

valid on any motor.

• Acceptable connector numbers include 0, 1, 2, …, 11, and 12. To read or write values from
a specific connector, the Mode of the connector must match the command. Connectors

cannot be configured for each Mode. See INPUT AND OUTPUT, CONNECTOR

CONFIGURATION below for more information.

• The standard library function atoi() (ASCII to integer) is used to parse numerical input:
o atoi() accepts an optional sign character (- or +) followed by numerical characters.

o atoi() ignores any leading whitespace

o atoi() stops parsing at the first nonnumerical character. This includes a decimal point

(.), meaning that atoi() will truncate any fractional/decimal value and return only the

integer portion of a numerical parameter.

o If no parameter or an invalid parameter is passed to atoi(), the function will return a

value of zero. The CCCP is not designed to handle this behavior differently than if

the command included a parameter of zero. Be sure to pass required parameters

when necessary to avoid unexpected behavior.

EXISTING COMMANDS AND EXPLANATIONS
 The following commands are available natively on the ClearCore Command Protocol.

Command Functionality Example
(explanation)

Notes

e# Enable motor e0
(enable motor0)

The CCCP waits on HLFB to assert
before accepting any subsequent
commands. This allows a motor to
complete any automatic homing
procedure without being
interrupted.

d# Disable motor d1
(disable motor1)

m# distance Command a
positional
move

m2 1000
(If
ABSOLUTE_MOVE is
set to 1, move motor2
to position 1000 steps.
If ABSOLUTE_MOVE
is set to 0, move
motor2 1000 steps in
the positive direction.)

The CCCP can be configured to
command either absolute or relative
positional commands by changing
the value of the ABSOLUTE_MOVE
#define compiler constant. A value of
1 configures the CCCP to command
absolute moves; a value of 0
configures relative moves.

v# velocity Command a
velocity move

v3 10000
(command motor3 to
move at 10000
steps/s)

q#<p/v/s> Query motor
position,
velocity, or
status

q0s
(query motor0’s
status)

Only one value (position, velocity, or
status) can be queried in a single
command. To query multiple values,
utilize multiple commands.
For position/velocity queries, the
CCCP returns the real-time
position/velocity that is being
commanded by ClearCore.
For status queries, the fields within
the motor status register are
returned.

l#<v/a> limit Limit motor
velocity or
acceleration

l1v 100
(limit motor1’s
velocity to 100
steps/s)

Note that velocity limits only apply to
positional moves. (Velocity moves
will not be limited by the velocity
limit set by this command.)
Acceleration limits apply to both
positional and velocity commands.
If a limit is changed during a move,
the limit will take effect on the next
commanded move; no change will
take place on the current move.
The CCCP restricts the range of
possible acceleration and velocity
limits. These bounds can be viewed in
the source code.

c# Clear motor
alerts

c2
(clear alerts on
motor2)

ClearCore has built-in alerts that will
cancel and disallow motion if they
occur. This function will clear alerts
and allow further motion. Ensure the
original cause of the alert has been
remedied before calling. If ClearPath
motor shutdowns have occurred, this
command will clear the shutdown by
cycling the enable signal to the
motor.

z# Set the zero
position for
motor# to the
current
commanded
position

z3
(define the zero
position for motor3 as
the current position)

This command is used to zero
ClearCore’s position reference by
defining the current commanded
position as the zero position. (No
motion is commanded to the motor.)

i# Read input i9
(read the input on
connector9 (A-9))

Read the input on connector.
Digital input pins will return 0 or 1.
Analog input pins will a return value
on the range [0, 4095]
corresponding to an input on the
range [0,10]V.
See INPUT AND OUTPUT,
CONNECTOR CONFIGURATION
below for more information.

o# outputVal Write output o5 1
(write to connector5
(IO-5) a value of 1;
this turns on
connector IO-5 if
configured as a digital
output.)

Write output on connector.
Digital output pins accept a
parameter of 0 or 1.
Analog output pins accept a
parameter on the range [409,2047]
corresponding to an output on the
range [4,20]mA. Ensure these values
accurately command your desired
output current, and make
adjustments as necessary.
See INPUT AND OUTPUT,
CONNECTOR CONFIGURATION
below for more information.

f fdbkType Change
feedback type

f 1
(change the feedback
type to verbose)

Passing a 0 sets feedback to
numerical; passing a 1 sets feedback
to verbose.

h h
(display the help
message)

ADDING NEW COMMANDS TO THE CLEARCORE COMMAND PROTOCOL
 The CCCP is designed to be expanded easily by adding new commands and functionality.

To add a new command (defined by a letter currently unassigned to a command), simply add a

new case to the switch(input[0]) statement. A few things to keep in mind:

• Most of the existing CCCP commands include some level of error checking. What

could cause your command to malfunction or command incorrect or unexpected

behavior? Be sure to check these conditions as you implement a new command.

• If your command has a numerical parameter, it can be parsed by the atoi()

command, which will return an integer. Pass the address of the first character where

the numerical parameter (and any optional whitespace and an optional sign

character (+ or -)) can appear. See other cases for examples of this implementation.

• It will likely be convenient to update the help message to include your new

command. As necessary, also consider adding a new feedback or error message if

your command introduces a unique failure case. See FEEDBACK below for

information on how to add a new feedback message.

• Be sure to include a break; in your new case.

FEEDBACK

The ClearCore Command Protocol reports feedback, either as verbose feedback messages

(enabled by default) or as simple numerical feedback, for a variety of errors and general

behavior. The choice between sending verbose versus numerical feedback is held in the

verboseFeedback boolean (0=numerical, 1=verbose), which is accessed by SendFeedback() and

can be modified by using the “f” command.

This feature is designed to be adaptable as functionality grows in user applications. To define

and implement a new feedback message, the following steps should be taken:

• #define a new number for the feedback.

• Initialize a new message (implemented as a char*).

• Update the FeedbackMessages array to include a new entry with the new number and
message.

• Increment the length of the FeedbackMessages array.

INPUT AND OUTPUT, CONNECTOR

CONFIGURATION

ClearCore has 13 configurable points of I/O. A table summarizing the acceptable connector

modes for each ClearCore connector can be found in the ClearCore manual and is reproduced

below for convenience. While each connector may have the capability to operate in more than

one Mode (e.g. INPUT_DIGITAL, OUTPUT_ANALOG), a connector is configured to operate in

one specific Mode at a time. The function of each connector is determined by its preconfigured

Mode. The CCCP sets the operational Mode for each connector by default, but these Modes can

be reconfigured according to the table in the manual. The input and output commands verify

that the requested connector’s configured Mode is acceptable for the attempted command.

ABSOLUTE AND RELATIVE MOVES

This example can be configured to command either relative positional moves or absolute

positional moves. This functionality is controlled by the #define compiler constant

ABSOLUTE_MOVE, which is set for absolute moves by default. To configure the CCCP to

command absolute moves, ABSOLUTE_MOVE should have a value of 1. To command relative

moves, ABSOLUTE_MOVE should have a value of 0. This change must be made when the

project is uploaded to ClearCore; there is no native functionality to modify this setting during

operation.

